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Enzymes are long established as extremely efficient catalysts. Here,
we show that enzymes can also be extremely efficient electrocata-
lysts (catalysts of redox reactions at electrodes). Despite being
large and electronically insulating through most of their volume,
some enzymes, when attached to an electrode, catalyze electroche-
mical reactions that are otherwise extremely sluggish (even with
the best synthetic catalysts) and require a large overpotential to
achieve a useful rate. These enzymes produce high electrocatalytic
currents, displayed in single bidirectional voltammetric waves that
switch direction (between oxidation and reduction) sharply at the
equilibrium potential for the substrate redox couple. Notoriously
irreversible processes such as CO2 reduction are thereby rendered
electrochemically reversible—a consequence of molecular evolu-
tion responding to stringent biological drivers for thermodynamic
efficiency. Enzymes thus set high standards for the catalysts of
future energy technologies.
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An electrocatalyst catalyzes a redox “half reaction” in which a
chemical transformation is coupled to electron transfer at an

electrode (1). The active sites of surface electrocatalysts such as
platinum are integral to the electrode and contribute to the Fermi
level, whereas molecular electrocatalysts are distinct entities with
their own electronic and chemical properties. Molecular electro-
catalysts can be attached to the electrode surface or diffuse freely
in solution, but depend upon interfacial electron transfer (IET).
Enzymes, a special category of molecular electrocatalysts, are
distinguished by their extraordinary activities, yet limited by their
size and fragility. Driven by industrial and technological needs
for significant improvements in rates and efficiency, enzymes
can provide crucial insights into the principles underpinning the
design and performance of synthetic molecular electrocatalysts.

The efficiency of enzyme catalysis is widely accepted (2–4):
Enzymes have highly selective substrate binding sites, avoid re-
leasing reactive intermediates, and decrease activation energies
(here, substrate refers to the species being transformed, not the
supporting material). Traditional definitions of enzyme efficiency
focus on how closely the rate approaches diffusion control (4).
Recently, electrochemistry has revealed a hitherto unquantified
dimension in enzyme catalysis; many redox enzymes minimize
the energy needed to drive a reaction—a quantity that is easily
visualized electrochemically and that we refer to as the overpo-
tential requirement. The energy efficiency of enzyme catalysis
is expected because biology must fully exploit available energy
resources and minimize energy losses.

The performance of an electrocatalyst is readily visualized by
cyclic voltammetry, a technique for driving reactions, measuring
kinetics and thermodynamics, detecting activation/inactivation
processes, and observing catalytic efficiency—all in a single ex-
periment (5). To explain the term “overpotential requirement,”
we refer to the two voltammograms in Fig. 1A. They depict the
simple (uncatalyzed) interconversion of the oxidized (Ox) and
reduced (Red) forms of a redox-active species. Importantly, in
Fig. 1A and in all cases discussed here, both Ox and Red are pre-
sent in solution: Thus, according to the Nernst equation, their

activities (concentrations) define an important reference point,
the equilibrium potential (Eeq). Electrochemically, Eeq is the
open circuit potential established by the mixture of substrates,
or the applied potential at which no net current flows. When
the applied potential (E) is above Eeq (E > Eeq) Red is oxidized
at the electrode, to adjust the concentrations of Ox and Red to
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Fig. 1. Concepts applied in this article. (A) Steady-state electrochemical
kinetics visualized by cyclic voltammetry. When both the oxidized and
reduced forms of a redox-active species are present, a reversible electroche-
mical reaction (one with a large exchange current density) produces a single
sigmoidal wave (blue) that cuts (without inflection) through the zero-current
axis at the equilibrium potential (Eeq) and achieves a potential-independent
limiting current in either direction at relatively low overpotential. Conversely,
if the exchange current density is low, the current is negligible around Eeq

and two sigmoidal waves (red), one for either direction, are separated in
potential, emerging from the baseline with an exponential dependence
on potential: A substantial overpotential is required to match the current
produced by the reversible system. (B) Cartoon showing an adsorbed enzyme
functioning as a molecular electrocatalyst.
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the ratio set by the Nernst equation. When IET is too slow to
maintain Nernstian equilibrium as E is changed, the voltammetry
is termed irreversible (Fig. 1A, red): Very little current is observed
until a sizeable overpotential (jE − Eeqj) is applied (for practical
purposes, this is the overpotential requirement), and the expo-
nentially increasing current is described by the Butler–Volmer
equation (5). In the limiting case of an electrochemically rever-
sible reaction (Fig. 1A, blue), IET is fast enough to maintain
Nernstian equilibrium, and even a minuscule overpotential pro-
duces a significant net current that reflects the thermodynamics
(the shifting Nernstian equilibrium), not the exponentially in-
creasing rate of IET. The difference between the two cases is
embodied in the exchange current (the magnitude of the equal
oxidation and reduction currents that comprise the dynamic equi-
librium at Eeq) (5). Irreversible systems have very low exchange
currents and are unresponsive to potential changes close to Eeq;
systems that approach the reversible limit have very high ex-
change currents and respond strongly.

To extend the concept of electrochemical reversibility to elec-
trocatalysis by molecules attached to electrodes (see Fig. 1B), we
adopt, pragmatically, the term “electrocatalytic exchange cur-
rent” that embodies not only IET, but also the turnover of the
catalytic center and (importantly for enzymes) intramolecular
electron transfer, each of which may limit electrocatalysis. Note
that the electrocatalytic exchange current remains defined at
Eeq, not at the potential of any of the redox centers in the elec-
trocatalyst. Thus, we refer to electrocatalysts with low electroca-
talytic exchange currents (and large overpotential requirements)
as irreversible, and electrocatalysts with high electrocatalytic
exchange currents (and very little overpotential requirement in
either direction) as reversible or efficient. In reality, electrocata-
lytic waveshapes rarely conform to the expectations for simple
electrochemical systems, precluding simple quantitative defini-
tions for terms such as the overpotential requirement. Finally,
in electrocatalysis, as in simple electrochemistry, a potential-
independent process eventually becomes rate limiting at high
overpotential. It is highly desirable (returning to the traditional
definition of enzyme efficiency; ref. 4) that the limiting current
density (current per unit electrode area) should approach diffu-
sion control. However, enzymes are large molecules, so they have
large surface area requirements and low active-site densities; this
feature must be taken into account when comparing the intrinsic
abilities of enzyme and surface electrocatalysts.

Results from Enzyme Electrocatalysts
Fig. 2 shows voltammograms from several enzymes that contain
the active sites shown in Scheme 1. Each enzyme, adsorbed on an
electrode, catalyzes a half-cell reaction of technological impor-
tance, which does not occur without a catalyst and usually exhibits
a large overpotential requirement.

Interconversion of H2 and Hþ. Interconversion of H2 and Hþ is cen-
tral to H2 fuel cells and renewable H2 generation; it is also crucial
in the metabolism of microbes that use metalloenzymes known as
hydrogenases to catalyze H2 evolution (to relieve reductive
stress) or H2 oxidation (H2 as an energy source).

The long-established electrocatalyst for H2 cycling, applied
in proton-exchange membrane (PEM) fuel cells, is elemental
platinum: H2 is reduced reversibly at Pt, with a high-exchange
current density (at least 1 mA cm−2) (6, 7). However, if future
transportation depended solely on such fuel cells, then demand
for Pt would greatly exceed resources. In contrast, hydrogenases
contain only common metals (iron and nickel) in their active sites
(see Scheme 1, 1A and 1B) (8). Some hydrogenases oxidize H2 at
≫1;000 s−1 and, on a per active-site basis, their electrocatalytic
activities may exceed that of Pt (7). Fig. 2A shows that electro-
catalysis by a [NiFe]-hydrogenase is reversible—the single, bidir-
ectional electrocatalytic wave cuts sharply through zero current at

Eeq. Common features of all hydrogenase mechanisms proposed
so far are η2 −H2 binding (Scheme 1, 1B), metal hydrido species
(Scheme 1, 1A), and closely positioned Brønsted groups (linked
to an Hþ-relay to solvent) for coupled Hþ transfer (9).
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Fig. 2. Direct electrocatalysis by enzymes visualized using cyclic voltammetry.
All enzymes were adsorbed on rotating-disc pyrolytic graphite edge electro-
des and both the oxidized and reduced substrates are present (in each case,
• indicates Eeq, referenced to Standard Hydrogen Electrode). (A) Reversible
interconversion of Hþ and H2 by hydrogenase-2 from Escherichia coli (pH 6,
10% H2 in Ar, 30 °C; ref. 48). (B) Reversible interconversion of CO2 and CO by
CODH 1 from C. hydrogenoformans (pH 7, 50% CO in CO2, 25 °C; ref. 17).
(C) Reversible interconversion of CO2 and formate by FDH1 from S. fumarox-
idans (pH 6.4, 10 mM carbonate, 10 mM formate, 37 °C; ref. 16). (D) Reversible
interconversion of NADH and NADþ by the hydrophilic domain of mitochon-
drial complex I (pH 7.8, 1 mM NADH, 1 mM NADþ, 20 °C; ref. 22). Multiple
scans are included in C and D to aid identification of the zero-current points.
(E) Irreversible reduction of O2 to H2O by either Pt(111), or by bilirubin oxidase
from Myrothecium verrucaria (pH 5.8, 100% O2, 20 °C; ref. 27; the Pt(111)
voltammogram has been decreased in size to faciliate comparison).

14050 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1103697108 Armstrong and Hirst

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
19

, 2
02

1 



www.manaraa.com

Activation and Reduction of CO2 to CO or Formate. At present, the
only viable large-scale process for CO2 reduction is photosynth-
esis, though its overall efficiency is low. An efficient catalyst for
converting CO2 directly to methanol or formate fuels, or to CO
for Fischer–Tropsch hydrocarbon production, could revolutionize
green energy technologies, hence there are extensive efforts to
develop electrocatalysts that reduce CO2 (10–13). Normally,
CO2 reduction proceeds via unstable intermediates such as
CO2

•− or HOCO• radicals; large overpotentials are required,
mixtures of products are produced, and side reactions such as
H2 formation compete. The most promising electrocatalysts so
far are polymeric ½RuðbpyÞðCOÞ2�n films that produce CO or
formate, depending on the bipyridyl substituents, at modest over-
potentials (10), and a pyridine system that can reduce CO2 to
methanol, also at low overpotential (13).

In contrast, biology has evolved specific enzymes for reducing
CO2 to CO and formate, which behave as reversible electrocata-
lysts. Carbon monoxide dehydrogenases (CODHs) from anaero-
bic organisms contain a [Ni4Fe-4S] cluster (see Scheme 1, 2) (14)
that catalyzes the interconversion of CO2 and CO (the C atom
of the substrate is coordinated to the Ni, and the leaving O-atom
coordinates as hydroxide to the “dangling” Fe). Formate dehy-
drogenases (FDHs) with tungsten-pterin active sites (see
Scheme 1, 3) (15) catalyze the interconversion of CO2 and
formate (16)—formally a hydride-transfer reaction, but the
mechanism is unclear. Fig. 2 B and C show that CODH1 from
Carboxydithermus hydrogenoformans and FDH1 from Syntropho-
bacter fumaroxidans are reversible electrocatalysts (16, 17); their
single, bidirectional electrocatalytic waves cut sharply through
zero current at Eeq.

Specific C–H Bond Transformations.Electrochemically driven (C–H)
hydride-transfer reactions, such as NADH oxidation, have many
applications; but despite significant efforts, large overpotentials
are required, and mixtures of products often result, for example,
from the NAD• radical intermediate (18, 19). Two flavoenzymes
in the mitochondrial electron-transfer chain, respiratory com-
plexes I and II (the NADH: and succinate:ubiquinone oxidore-
ductases), catalyze reversible C–H bond formation. Reversible
oxidation of NADH comprises removal of the C4 hydridic H
atom from the pyridinium ring (stacked above the flavin isoallox-
azine system; Scheme 1, 4) (20), whereas succinate oxidation to
fumarate involves removal of Hþ and H− to form a C ¼ C bond
(21). Both reactions exploit a flavin’s ability to mediate hydride
and electron transfers. Fig. 2D shows that the membrane-extrinsic
domain of complex I (subcomplex 1λ) is a reversible catalyst for
NADþ∕NADH interconversion (22). The membrane-extrinsic
domain of complex II is also a reversible electrocatalyst (23).

Interconversion of O2 and H2O. Interconversion of O2 and H2O
is central to fuel cells and future energy technologies that use
solar energy or surplus electricity to split water, but no reversible
electrocatalyst (biological or artificial) is known. The best non-
biological electrocatalysts for the oxygen reduction reaction are
Pt-based surfaces, but they have sizeable overpotential require-
ments [Pt3Nið111Þ provides a 0.1-V improvement over Pt(111)
alone; ref. 24]. The overpotential requirement for O2 reduction
is a major reason why PEM fuel cells produce a voltage far
short of the reversible cell potential (25). Enzymes perform bet-
ter, and relatively efficient four-electron reduction of O2 to H2O
is catalyzed by the “blue” Cu oxidases, laccase (26), and bilirubin
oxidase (27). These enzymes contain a tri-Cu active site and a
nearby blue Cu center that provides a fast electron relay (see
Scheme 1, 5). Fig. 2E compares O2 reduction, at pH of approxi-
mately 6, by Pt(111) and by bilirubin oxidase adsorbed on gra-
phite. Despite the high activity per enzyme molecule, the low
number of active sites per unit electrode area gives a low current
density. Both traces show irreversible electrocatalysis, but the
enzyme’s overpotential requirement is significantly smaller than
that of Pt.

Our enzyme electrocatalysts incorporate many common fea-
tures. Their active sites are buried in the protein to exclude sol-
vent, protect fragile inner coordination spheres, and provide
highly organized outer-sphere (supramolecular) environments.
Precisely positioned close-range functionalities deliver protons
on demand and synchronize proton and electron transfers, while
chains of H2O molecules and protein bases mediate long-range
proton exchange with solvent. Multiple electron capacity is avail-
able in or close to the active site, and long-range electron transfer
is handled by fast relays.

Principles for Minimizing Electrocatalytic Overpotential
Requirements
For the simplest surface electrocatalysts, IETand substrate trans-
formation occur via a single transition state, and the overpoten-
tial requirement corresponds to the activation energy. However,
almost all redox enzymes catalyze the transfer of two or more
electrons, coupled to transfer of protons and other species such
as oxygen atoms. In these complex systems, an overpotential
requirement can stem from various factors including poor inter-
facial or intramolecular electron-transfer kinetics, poorly syn-
chronized coupled electron-transfer reactions with high-energy
intermediates, and poor matching between the redox thermody-
namics of substrate and catalyst.

Rate-Limiting Electron Transfer to/from the Active Site. A molecular
electrocatalyst facilitates two half cycles: the catalytic redox trans-
formation and regeneration of the active site. Electrochemically
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Scheme 1. Representations of the structures of the catalysts discussed in this article. Bound substrates or intermediates are in red andparts of the supramolecular
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reducing or oxidizing an enzyme’s active site requires both in-
terfacial (potential-dependent) and intramolecular (potential-
independent) electron transfer. Rates of long-range electron
tunneling reactions are governed by electronic coupling between
the donor and the acceptor, and by the activation energy, ΔGact,
which in the semi-Classical Marcus model (28) is minimized
when λ, the reorganization energy, is equal to −ΔG, the Gibbs
free-energy change. Typically, an intramolecular electron-transfer
pathway, such as the series of seven iron-sulfur clusters in respira-
tory complex I (20), connects the active site to a distal site closest
to the surface (Fig. 1B). Intramolecular relays can be optimized
by minimizing the tunnel barriers (distances between sites should
be <14 Å) (29), avoiding large free-energy changes (steps in
potential) and minimizing reorganization energies (burying a site
ensures λsolvent is small). If all the relay steps are fast, intramole-
cular electron transfer, even to a deeply buried active site, may
have little impact on electrocatalysis. Alternatively, a particular
relay site may constitute an electrocatalytic control center (30)
that creates a potential-determining step: Electron exchange
with the electrode up to, but not beyond, this point is fast and
reversible. The rate of IET (between the distal relay site and the
electrode) always depends on the electrode potential; the distal
site must also be positioned close to the electrode surface to mini-
mize the interfacial tunnel barrier. The fact that only a fraction
of the possible orientations of an adsorbed enzyme fulfil this
requirement modifies the dependence of IET rate on potential,
accounting for an extended potential dependence in the electro-
catalytic voltammetry (31, 32).

Proton and Electron-Transfer Reactions Within the Active Site. Elec-
tron transfers within active sites drive chemical rearrangements
that usually involve proton transfers. As protons can tunnel
only very small distances (≪1 Å) the organization of the active
site, and precise positioning of proton donors and acceptors, are
critical (3): An excellent example is the bridgehead N atom posi-
tioned just above one of the Fe atoms in the active site of [FeFe]-
hydrogenases (Scheme 1, 1B) (8). In electrocatalysis, both parts
of a proton-coupled electron transfer (PCET) reaction must
be synchronized (33, 34). Stepwise PCET reactions proceed via
unstable (high energy) intermediates, as visualized through the
Pourbaix (E-pH) diagram shown in Fig. 3A; on the other hand,
they provide the basis for pumps and gates—devices that trans-
duce or control energy flow in respiration and photosynthesis.
The free intermediates provide limiting scenarios for explaining
an overpotential requirement. Fig. 3A shows how the reduction
and protonation of Ox to form RedH (at pH 7) occurs in a step-
wise reaction, via the unstable Red intermediate. First, an over-
potential is required to energize the system (1 → 3) and drive
electron transfer to populate the Red state (3 → 4); the unstable
Red intermediate is then protonated spontaneously (4 → 5) and
energy is released as heat. When the two steps are entirely inde-
pendent, the overpotential requirement is reflected in the differ-
ence between the pH-dependent Ox/RedH potential and the
pH-independent Ox/Red potential. As the two steps become bet-
ter kinetically coupled, the overpotential requirement decreases
(note that kinetic coupling is a relative term; stepwise reactions
appear better coupled on slower, less demanding catalytic time-
scales) (35). Only a truly concerted PCETreaction, which crosses
the diagonal boundary line directly through a single transition
state (1 → 2 in Fig. 3A), remains completely coupled under
the most demanding conditions. Similar arguments apply when
electron transfers are coupled to other chemical steps, such as
transfer of a hydroxide or oxido group.

Multiple Electron and Proton Transfer Processes Within the Active Site.
Multiple electron–proton transfer reactions of small molecules
are conveniently viewed using Frost (oxidation state) diagrams
(36). Frost diagrams show how the free energy of the system

varies with oxidation number (the slope of a line between two
species gives the reduction potential for their interconversion)
and refer to free species at equilibrium in aqueous solution (they
are a limiting case of the diagrams used to describe bound species
in heterogeneous catalysis; ref. 25). Fig. 3B shows Frost diagrams
for some of the reactions discussed here. The energy-rich fuels
and oxidants (H2, CO, HCOO−, and O2) appear toward the top,
and the energy-poor products of fuel consumption (H2O, Hþ,
and CO2) lower down. Between the fuels/oxidants and their pro-
ducts lie intermediates through which (formally) each species
must pass; unstable intermediates lie above the line connecting
reactant and final product, and their formation produces an over-
potential requirement due to the difference between the poten-
tials required to form the intermediate and the final product.

The cause of the large overpotential usually required to reduce
CO2 to CO or formate is evident from Fig. 3B—CO2 reduction in
two discrete one-electron steps requires formation of the CO2

•−

radical. Similarly, reduction of H2 in one-electron steps via an
H-atom intermediate would require an overpotential as high as
1.7 V (see Fig. 3B), and uncatalyzed interconversion of NADH
and NADþ via the NAD• radical requires up to 0.7 V (18). Elec-
trocatalysts avoid, or minimize, these overpotential requirements
in two ways. First, they can kinetically couple the formation and
onward reaction of the unstable intermediate: The limit of this
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(B) Frost (oxidation state) diagram showing the redox reactions of Hþ∕H2,
O2∕H2O (49), and CO2∕CO or formate (pH 7) (16, 17). The slope of the line
connecting two species gives the reduction potential for their interconver-
sion; intermediates above connecting lines are unstable with respect to
disproportionation. The vertical displacement of an intermediate, above the
line for the substrate reaction, indicates the overpotential requirement
associated with its formation.
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approach, adopted for the interconversions of NADþ∕NADH,
Hþ∕H2, and perhaps CO2∕formate, is transfer of a hydride
moiety (two electrons and one proton moving as a single entity).
Second, the enzyme may bind and stabilize the intermediate,
adjusting its Frost-diagram coordinate down toward the line
joining reactant and final product.

The interconversion of O2 and H2O is the most challenging
reaction discussed here, as all free intermediates are unstable
with respect to O2 and H2O (Fig. 3B). Although the direct reac-
tion best avoids an overpotential requirement, it requires a single
transition state in which the four electrons and four proton trans-
fers are concerted with O–O cleavage—no known catalyst
achieves this. More realistically, the reaction is split into two or
more manageable stages, involving intermediates that are stabi-
lized by binding them: This concept is important for developing
synthetic O2 reduction electrocatalysts (25). For example, paus-
ing at H2O2 relaxes the four-electron problem but introduces
an overpotential requirement of up to 0.54 V in both direc-
tions (nevertheless, a lower cost than pausing at either radical
state). Specific binding of the intermediate helps further: In-
deed, spectroscopic studies of blue Cu oxidases have detected
a peroxy- intermediate (37), and X-ray diffraction has revealed
an O–O species coordinated between three Cu atoms (38) (see
Scheme 1, 5).

Reduction Potential of the Catalyst Is Poorly Matched to That of the
Substrate. If the reduction potential of the active site (even when a
substrate is bound) differs significantly from that of the reaction
being catalyzed, then the catalyst will function only in one direc-
tion. For example, if the reduction potential of the active site is
0.5 V below that of the substrate, only a reductive electrocatalytic
wave will be observed (close to the active-site potential) and
no amount of overpotential will drive the oxidative reaction at
any useful rate—an asymmetry that is not expected for surface
electrocatalysts. The reduced active site resembles an unstable
intermediate because it requires an overpotential (relative to
Eeq) to drive its formation. If the potential mismatch is small,
electrocatalysis will remain bidirectional but will be biased in
one direction; in Fig. 2D, catalysis is biased toward NADþ reduc-
tion. Viewed another way, the electrocatalytic exchange current is
optimized when the reduction potential of the molecular electro-
catalyst matches that of the reaction being catalyzed. Fig. 2C
exemplifies the importance of a matched active-site potential,
because CO2 is easily reduced by the tungsten center in Scheme 1
(4); in contrast, the corresponding higher-potential molybdenum
center has only been observed to catalyze formate oxidation. In
Fig. 2E, O2 reduction by bilirubin oxidase is irreversible, but the
overpotential requirement results not from sluggish IET kinetics,
but because the blue Cu (which relays electrons to the active site,
Scheme 1, 5) is the electrochemical control center that deter-
mines the catalytic potential (27). Similarly, when a redox med-
iator is used to transfer electrons between enzyme and electrode,
catalysis usually occurs at the mediator potential. For example,
O2 reduction by laccase embedded in a hydrogel with covalently
attached Os complexes occurs close to the reduction potential of
the particular Os complex used (39).

Overpotentials in Biology
The electrocatalytic efficiency of an enzyme addresses only the
oxidation or reduction of a single substrate, whereas biological
redox reactions occur in pairs. A reversible enzyme-catalyzed
redox reaction conserves the most energy, but many enzyme re-
actions are coupled to perform useful work. NADH oxidation
by respiratory complex I is reversible (Fig. 2D), but when coupled
to ubiquinone reduction (at a distant site) the approximate 0.5-V
potential difference renders the redox reaction alone irreversible
(and very inefficient). In the cell, most of the free energy is con-
served by proton translocation across an energy transducing

membrane, creating the proton-motive force that is used to power
processes such as ATP synthesis. The complete proton-coupled
redox reaction is reversible. Conversely, some enzymes have
evolved to act irreversibly, to prevent back-reactions and main-
tain fluxes through pathways. Cytochrome c oxidase is the last
enzyme in the mitochondrial respiratory chain; it reduces O2 to
water in a series of stepwise electron–proton transfers that are
tightly coupled to proton translocation (40). Only part of the
energy from this reaction is conserved in proton pumping, and
even the largest proton-motive forces available to biology are
unable to drive the reverse reaction. Similarly, the photosynthetic
Mn4CaO4 center uses a series of light-driven, mainly stepwise
PCET reactions to oxidize water to O2, but it does not catalyze
O2 reduction [electron transfer from O2 to P680þ (reduction
potential ca. 1.25 V) through the Mn center is irreversible;
ref. 41].

Translations into Emerging Energy Technologies
Maximal rates and efficiencies of energy conversion are
highly desirable in emerging technologies, such as production of
solar fuels. The energy-conserving efficiencies of electrocatalytic
enzymes have been revealed in two demonstrations, each of
which would not be possible if the catalysts exhibited significant
overpotential requirements. First, a hydrogenase and a CODH
coattached to conducting graphite platelets catalyze the water
gas shift reaction (free-energy change of just 0.1 V) (42) (Fig. 4A):
An aqueous suspension of platelets yields 2.5 molH2 ðmol
hydrogenaseÞ−1 s−1 at 30 °C, whereas the industrial reaction re-
quires temperatures exceeding 200 °C for similar per-site activity.
Second, enzymes attached to anatase nanoparticles provide
excellent models for solar fuel conversion (Fig. 4B). As an alter-
native to UV (band gap) excitation, a coattached Ru-bipyridyl
photosensitizer is used to populate the conduction band using
visible light. Hydrogenases and CODH catalyze H2 production
and CO production, respectively, despite the conduction band
potential offering only small driving forces—a [NiFeSe]-hydro-
genase uses approximately 0.16 V to drive H2 production at
50 molH2 ðmol hydrogenaseÞ−1 s−1 (18;000 h−1) (43) and CODH
uses approximately 0.05 V to catalyze CO production at
0.2 molCO ðmolCODHÞ−1 s−1 (720 h−1) (44).

Can efficient electrocatalysts be designed using the principles
of enzymes? Many d-block metal complexes have been synthe-
sized to mimic the functions of redox enzymes, but they tend
to lack critical features such as multielectron capacity and pre-
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Fig. 4. Exploiting enzyme electrocatalysts and their design principles in
technological applications. (A) The water–gas shift reaction is catalyzed,
under ambient conditions, by two enzymes (a CODH and a hydrogenase),
connected by coadsorbing them to conducting graphite platelets (potentials
vs. Standard Hydrogen Electrode given for pH 6, 25 °C) (42). (B) Anatase
(TiO2) nanoparticles comodified with an Ru-photosensitizer [which adsorbs
light and donates electrons into the conduction band (CB)] and either a
hydrogenase (for H2 production) or a CODH (for CO2 reduction) (43, 44).
(C) A bioinspired electrocatalyst for interconverting Hþ and H2: The design
combines a catalytically competent active site that is protected from the aqu-
eous phase but accessible to Hþ and H2, and structures for relaying electrons
rapidly between the electrode and the active site (47).
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cisely positioned functional groups. They may not even work in
water, which is certainly problematic for a water-splitting
catalyst. We therefore highlight one particularly successful case,
the step-by-step development of a reversible electrocatalyst for
H2 production and oxidation, and show how its properties fit
in with our discussions.

Among numerous functional analogs of hydrogenases, the
most notable are a group of ½NiðdiphosphineÞ2�2þ compounds
(Scheme 1, 6) created by DuBois and coworkers (45, 46). The
pendant N bases are well positioned for PCET, to allow smooth
interconversion of Hþ and η1 or η2-coordinated H2 species and
mimic the assumed action of the bridgehead N atom in the
[FeFe]-enzyme (Scheme 1, 1B). Compound 6 (Scheme 1, R ¼ Ph
or benzyl) catalyzes electrochemical H2 production with an
overpotential requirement of approximately 0.2 V, but it must be
dissolved in acetonitrile, with dimethylformamide as a proton do-
nor (46). Subsequently, Artero and coworkers covalently linked
compound 6 to conducting carbon nanotubes attached to an in-
dium tin oxide electrode and embedded the assembly in Nafion,
a proton-conducting polymer (47) (Fig. 4C). In contact with aqu-
eous H2SO4, the integrated system functions as a reversible elec-

trocatalyst for H2 production or oxidation, with bidirectional
electrocatalytic voltammograms displaying a single wave that
cuts sharply across the potential axis at Eeq. The Nafion performs
the function of the protein, protecting the active site from H2O
yet allowing facile Hþ transfer, and the carbon nanotubes per-
form the function of the FeS relay (47).

Highly active and efficient redox catalysts are essential for
future energy-capturing and energy-lean electrochemical/photo-
electrochemical technologies. Much inspiration stems from these
giant, unstable molecules that are so successful at redox catalysis
yet unsuited for direct application: Enzymes reveal what is pos-
sible and provide test scenarios in which catalysis is so efficient
that other factors become limiting. Bioinspired redox catalysts
must do more than just mimic the inner sphere of an active site;
they must provide a whole environment to minimize reorganiza-
tion energies, synchronize electron and proton transfers, control
the formation and stability of intermediates, and impose appro-
priate redox thermodynamics. In response to the need for low
cost, renewable, robust, and efficient catalysts, these are tough
but worthwhile challenges.
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